A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2.

نویسندگان

  • Masaru Ohta
  • Yan Guo
  • Ursula Halfter
  • Jian-Kang Zhu
چکیده

SOS2 (salt overly sensitive 2) is a serine/threonine protein kinase required for salt tolerance in Arabidopsis thaliana. In this study, we identified the protein phosphatase 2C ABI2 (abscisic acid-insensitive 2) as a SOS2-interacting protein. Deletion analysis led to the discovery of a novel protein domain of 37 amino acid residues, designated as the protein phosphatase interaction (PPI) motif, of SOS2 that is necessary and sufficient for interaction with ABI2. The PPI motif is conserved in protein kinases of the SOS2 family (i.e., protein kinase S, PKS) and in the DNA damage repair and replication block checkpoint kinase, Chk1, from various organisms including humans. Mutations in the conserved amino acid residues in the PPI motif abolish the interaction of SOS2 with ABI2. We also identified a protein kinase interaction domain in ABI2 and examined the interaction specificity between PKS and the ABI phosphatases. We found that some PKSs interact strongly with ABI2 whereas others interact preferentially with ABI1. The interaction between SOS2 and ABI2 was disrupted by the abi2-1 mutation, which causes increased tolerance to salt shock and abscisic acid insensitivity in plants. Our results establish the PPI motif and the protein kinase interaction domain as novel protein interaction domains that mediate the binding between the SOS2 family of protein kinases and the ABI1/2 family of protein phosphatases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction.

Abscisic acid (ABA) mediates seed maturation and adaptive responses to environmental stress. In Arabidopsis, the ABA-INSENSITIVE1 (ABI1) protein phosphatase 2C is required for proper ABA responsiveness both in seeds and in vegetative tissues. To determine whether the lack of recessive alleles at the corresponding locus could be explained by the existence of redundant genes, we initiated a searc...

متن کامل

Identification of an important site for function of the type 2C protein phosphatase ABI2 in abscisic acid signalling in Arabidopsis

It is known that the clade A protein phosphatase 2Cs (PP2Cs), including ABI1 and ABI2 and other PP2C members, are key players that function directly downstream of the PYR/PYL/RCAR abscisic acid (ABA) receptors. Here, identification of a crucial site for function of ABI2 protein phosphatase in ABA signalling is reported. It was observed that a calcium-dependent protein kinase (CDPK) phosphorylat...

متن کامل

The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3.

The plant SOS2 family of protein kinases and their interacting activators, the SOS3 family of calcium-binding proteins, function together in decoding calcium signals elicited by different environmental stimuli. SOS2 is activated by Ca-SOS3 and subsequently phosphorylates the ion transporter SOS1 to bring about cellular ion homeostasis under salt stress. In addition to possessing the kinase acti...

متن کامل

Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation

Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...

متن کامل

Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase.

Protein phosphatases of type 2C (PP2Cs) play important roles in eukaryotic signal transduction. In contrast to other eukaryotes, plants such as Arabidopsis have an unusually large group of 69 different PP2C genes. At present, little is known about the functions and substrates of plant PP2Cs. We have previously shown that MP2C, a wound-induced alfalfa PP2C, is a negative regulator of mitogen-act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 20  شماره 

صفحات  -

تاریخ انتشار 2003